Exam Computational Fluid Dynamics

January 29, 2015. Duration: 3 hours.

The weights used to determine the final mark are given below. The maximum score is
36 + 4 (free) = 40 points.

Problem 1

Let the difference operator C be defined by C¢; = (¢pj41 — ¢j—1)/(2h) — A(@j+1 — 3¢, +
3¢j—1 — ¢j—2)/h, where h is the mesh size, x; = jh and ¢; = ¢(x;).

a. [3 points] Show that the difference operator C¢; is for general A a second-order
accurate approximation of ¢'(z;), and third-order accurate only if A = 1/6.

b. [3] Give the general solution of the difference equation C¢; = 0. What happens
with this general solution if A tends to zero?

c. [2] We want to solve the problem ¢'(z) = 0 for 2 > 0 with ¢(0) = 1. How can this
boundary condition be added to the difference scheme such that all freedoms of
the general solution are fixed?

d. [2] Determine the symmetric and skew symmetric part of the above difference
operator for general A and determine from that the artificial diffusion of the scheme.
Problem 2

Consider the equation
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%%’(t) + %(ijJrl(t) —¢j-1(t)) — ﬁ(ﬁbjﬂ(t) —2¢;(t) + ¢j-1(1)) = f;(t),
for j =1,...,M and where h = 1/M. Here ¢o(t) = ¢pr(t) = 0 for all ¢t and ¢;(0) > 0 for
all j and f;(t) > 0 for all j and ¢.

a. [3] Apply the Forward Euler method to this problem and show that for a mesh-
Péclet number less than 2 we get a positive solution for all time if the time step
satisfies a certain criterion. Give this criterion.

b. [3] Compute the Fourier amplification factor of the scheme of part a and give the
condition on the time step which makes the computation absolutely stable.

Exam questions continue on other side



Problem 3

a. [2] Show that the operator L implicitly defined by L¢ = (u¢), + (v¢), is a skew
adjoint operator if divu =0, i.e. show that [, LpdQ = — [, pLpdQ + [ .. for
any domain 2 with boundary I'.

b. [1] Suppose we have the equation ¢y = L¢ defined on the unit square with L
as defined in the previous part and ¢(x,y,0) given. What is relevance of the
skew-adjointness of L for the solution ¢(z,y,t) of this equation?

c. [3] Consider an uniform mesh. Give a discretization of the operator L that pre-
serves the skew-adjointness of L.

Problem 4

a. [3] In the Lecture Notes, three different positionings are discussed for the variables
occurring in the incompressible Navier-Stokes equation. Sketch these three positi-
onings. If we use central second-order differences for the gradient operator acting
on the pressure p, what kind of indeterminacy occurs for the pressure in each of
these cases?

b. [3] Consider the staggered arrangement of velocities and pressures as in the Marker-
and-Cell (MAC) method. Derive the pressure Poisson equation that arises when
the time-dependent incompressible Navier-Stokes equations are discretized using
an explicit method.

c. [2] Show that the matrix occurring in the equation of part b is singular if on all
boundaries the normal velocity is prescribed and give also the associated eigen-
vector.

d. [2] Suppose we want to simulate the flow around a wing-like shape in a wind
tunnel. Assume the flow is incompressible. Indicate all the boundary conditions
you would impose, and motivate them.

Problem 5

a. [2] The smallest space scale [ and time scale 7x in a turbulent flow can be
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expressed in the properties of the largest eddies in the flow by I = Re;dg/ ed and

TK = Re;dl/ 2led/ued, respectively. How do these relations lead to the statement
that if for turbulent flow the Reynolds number increases by a factor 10 that the
complexity of the computations is increased by about a factor 1000.

b. [2] For the comparison of results of two different numerical models for the same
turbulent flow problem, one cannot just compare the two solutions at a certain
time instance, why not? Which two quantities are compared?



